Landau’s Theorem for Holomorphic Curves in Projective Space and The Kobayashi Metric on Hyperplane Complements

نویسندگان

  • Frederick W. Gehring
  • William Cherry
  • Alexandre Eremenko
چکیده

We prove an effective version of a theorem of Dufresnoy: For any set of 2n + 1 hyperplanes in general position in Pn, we find an explicit constant K such that for every holomorphic map f from the unit disc to the complement of these hyperplanes, we have f#(0) ≤ K, where f# denotes the norm of the derivative measured with respect to the Fubini-Study metric. This result gives an explicit lower bound on the Royden function, i.e., the ratio of the Kobayashi metric on the hyperplane complement to the FubiniStudy metric. Our estimate is based on the potential-theoretic method of Eremenko and Sodin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Julia directions for holomorphic curves

A theorem of Picard type is proved for entire holomorphic mappings into projective varieties. This theorem has local nature in the sense that the existence of Julia directions can be proved under natural additional assumptions. An example is given which shows that Borel’s theorem on holomorphic curves omitting hyperplanes has no such local counterpart. Let P be complex projective space of dimen...

متن کامل

A weighted version of Zariski’s hyperplane section theorem and fundamental groups of complements of plane curves

In this paper, we formulate and prove a weighted homogeneous version of Zariski’s hyperplane section theorem on the fundamental groups of the complements of hypersurfaces in a complex projective space, and apply it to the study of π1(P 2 \C), where C ⊂ P is a projective plane curve. The main application is to prove a comparison theorem as follows. Let φ : P → P be the composition of the Verones...

متن کامل

Affinization of Segre products of partial linear spaces

Hyperplanes and hyperplane complements in the Segre product of partial linear spaces are investigated. The parallelism of such a complement is characterized in terms of the point-line incidence. Assumptions, under which the automorphisms of the complement are the restrictions of the automorphisms of the ambient space, are given. An affine covering for the Segre product of Veblenian gamma spaces...

متن کامل

Generalization of a theorem of Clunie and Hayman

Clunie and Hayman proved that if the spherical derivative ‖f ′‖ of an entire function satisfies ‖f ′‖(z) = O(|z|σ) then T (r, f) = O(rσ+1). We generalize this to holomorphic curves in projective space of dimension n omitting n hyperplanes in general position. MSC 32Q99, 30D15. Introduction We consider holomorphic curves f : C → P; for the general background on the subject we refer to [7]. The F...

متن کامل

On the Lower Order Terms of the Asymptotic Expansion of Zelditch

A projective algebraic manifold M is a complex manifold in certain projective space CPm, m ≥ dimC M = n. The hyperplane line bundle of CPm restricts to an ample line bundle L onM . The bundle is a polarization onM . Suppose g is a Kähler metric on M . We say g is a polarized Kähler metric with respect to L, if the corresponding Kähler form represents the first Chern class c1(L) of L in H 2(M,Z)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006